Partie

Mouvements et interactions

Séquence 3

Qu'est-ce que l'interaction gravitationnelle?

I) Comment modéliser une interaction?

Activité « Interactions »

L'action exercée par un objet en contact d'un autre est une <u>action de contact</u>. Une action de contact est localisée <u>au centre de la surface de contact</u> entre les 2 objets.

L'action exercée par la Terre sur la Lune ou tout autre objet est une <u>action à distance</u>. Elle est répartie dans toute la Lune ou tout le volume d'un autre objet. Elle est localisée <u>au centre de gravité</u>.

La Terre attire la Lune ou un objet de la même façon que la Lune ou un objet attire la Terre : c'est une <u>interaction</u>.

Une action peut être représenté par un segment fléché appelé <u>vecteur force</u>. Ce vecteur a même direction et même sens que l'action et une longueur proportionnelle à son intensité mesurée en <u>newton de symbole N</u>.

Un diagramme objet-interactions est la représentation de l'objet étudié et des interactions avec les autres objets (flèches en trait plein : actions de contact, flèches en pointillés : actions à distance).

II) <u>Comment modéliser la gravitation</u> <u>universelle</u>?

Activité «Gravitation»

Deux corps A et B s'attirent mutuellement (interaction) sous l'effet de leur masse. Cette attraction est appelée interaction gravitationnelle (gravitation).

Isaac Newton énonça l'expression (pas à apprendre) de la force gravitationnelle : $\mathbf{m}_A \times \mathbf{m}_B$

$$F_{A/B} = G \times \frac{d^2}{d^2}$$

avec F en N

G (constante de gravitation universelle)
= 6,67 x 10⁻¹¹ unité S.I

m en kg
d en m

III) Qu'est-ce que le poids?

Le poids d'un corps sur Terre est la manifestation de l'attraction gravitationnel de la Terre sur ce corps. Il s'exerce verticalement et de haut en bas

Activité «Poids»

Le poids d'un corps est proportionnel à sa masse :

$$P = m \times g$$

avec P en newton (N)
m en kg
g=10 N/kg

Le poids d'un corps n'est pas le même sur la Lune (g=1,67N/kg) ou les autres planètes.

La masse d'un corps est la même dans tout l'Univers, elle représente la quantité de matière.