
Thème 3 Activité n°3: Route du Rhum

Capacités exigibles.

- · Identifier les échelles temporelles et spatiales pertinentes de description d'un mouvement.
- Calculer une vitesse moyenne.

La Route du Rhum est une course transatlantique en solitaire à la voile, courue tous les quatre ans entre Saint-Malo et la Guadeloupe. Le 12 novembre 2018, Francis Joyon a remporté cette course avec seulement sept minutes et huit secondes d'avance sur François Gabart, après un périple en haute mer de 7 jours 14 heures 21 minutes et 47 secondes, établissant ainsi un nouveau record.

Comment les valeurs des vitesses des deux voiliers ont-elles évolué au cours de cette fin de course?

QUESTIONS

1. S'APPROPRIER

Justifier que les positions d'un voilier par rapport à l'autre ainsi que les tailles des voiliers représentés sur le document ne sont pas à l'échelle.

2. RÉALISER

- a. Quel est le référentiel utilisé pour exprimer la position des 2 voiliers (voir act. 1)
- b. À l'aide du document et des données, compléter le tableau de la page suivante en étant vigilant aux unités utilisées (retrouver d'abord les valeurs déjà données pour valider la méthode utilisée). Écrire les calculs complets dans les cellules jaunes uniquement.

DONNÉES

La valeur $v_{\rm m}$ de la vitesse moyenne d'un point P entre deux positions P_1 et P_2 aux dates t_1 et t_2 est égale au quotient de la distance $d=P_1$ P_2 parcourue pendant la durée $\Delta t=t_2-t_1$:

$$v_{\rm m} = \frac{d}{\Delta t}$$
.

Date (h min)	Dimanche 21h45		23h45		Lundi 0h30		2h10		3h45		4h21	
Position de Gabart (par rapport à l'arrivé) (km)	53,7		50,4									
Position de Joyon (par rapport à l'arrivé) (km)												
Durée Δt entre deux dates correspondant à deux positions successives (s)		7,2 x 10 ³										
Vitesse moyenne de Gabart (m.s ⁻¹)		0,46										
Vitesse moyenne de Joyon (m.s ⁻¹)		2,3										

3. VALIDER

- a. À l'aide du texte d'introduction, donner le retard de Gabart à l'arrivée et en déduire la durée Δt mise pour parcourir les derniers kilomètres après 3h45 le lundi.
- b. En supposant que les mouvements des deux bateaux sont rectilignes uniformes dans le référentiel d'étude après 3h45 le lundi, calculer la vitesse moyenne de Gabart au moment de l'arrivée
- c. À l'aide d'un calcul, estimer la distance en mètre séparant les deux bateaux au moment de la victoire de Francis Joyon et expliquer pourquoi l'arrivée fut pleine de rebondissements.

RÉPONSES

1.

Ce qu'il faut retenir: Calcul d'une vitesse moyenne

La valeur v_m de la vitesse moyenne d'un point P entre deux position P_1 et P_2 aux date t_1 et t_2 est égale au quotient de la distance $d = P_1P_2$ parcourue pendant la durée $\Delta t = t_2 - t_1$:

$$v_m = \frac{d}{\Delta t}$$

avec:

 v_m en m.s⁻¹ d en m Δt en s