Séquence 5 <u>Comment détecter la présence</u> <u>de certains ions</u> ?

I) Comment tester la présence de certains ions ?

Ions à connaître

Nom de l'ion	Formule de l'ion
Ion sodium	Na⁺
Ion chlorure	CI-
Ion cuivre II	Cu ²⁺
Ion fer II	Fe ²⁺
Ion fer III	Fe ³⁺

Analyse d'une eau minérale

Analyse moyenne en mg / L

Calcium	Ca ²⁺	36	Hydrogénocarbonate H	CO3	263
Magnésium	Mg ²⁺	22	Chlorure	CI	4
Sodium	Na +	- 22	Sulfate S	SO ₄ 2-	4
Potassium	K+	1,5	Nitrate	10 ₃	< 1

Résidu sec à 180°C 260 mg / L

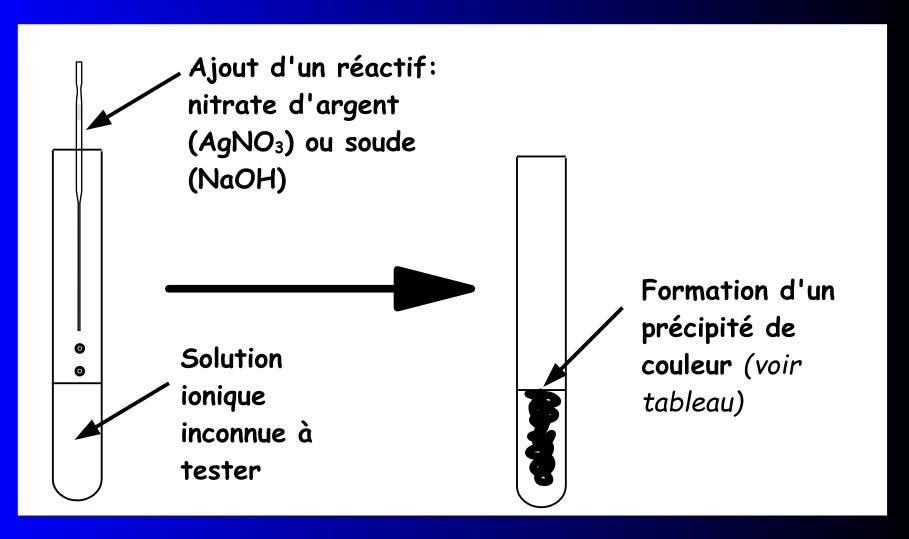
pH = 7,7

Exemple de solutions

Solu	tion de	Chlorure de sodium (eau salée)	Sulfate de cuivre	Sulfate de fer II	Chlorure de fer III
•	Noms	Ions chlorure et ions sodium	Ions sulfate et ions cuivre	Ions sulfate et ions fer II	Ions chlorure et ions fer III
Ions	Formules	Cl⁻ et Na⁺	504 ²⁻ et Cu ²⁺	50 ₄ ² - et Fe ² +	Cl ⁻ et Fe ³⁺

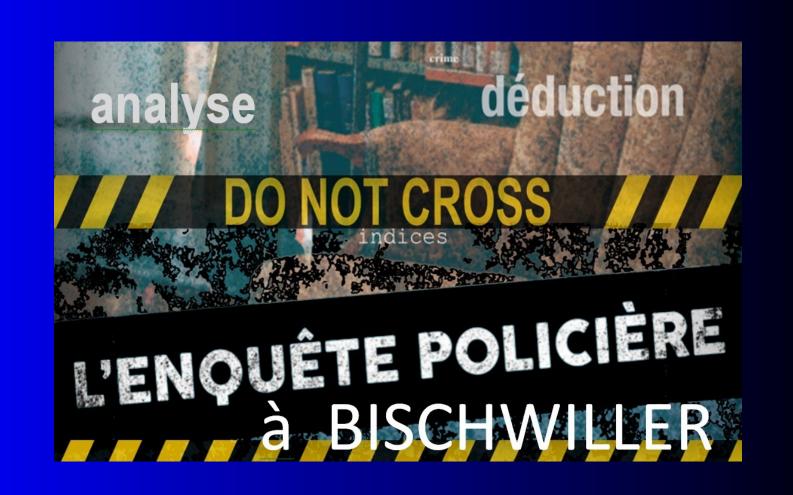
Act. 1

Tests de reconnaissance d'ions


Tests de reconnaissance d'ions

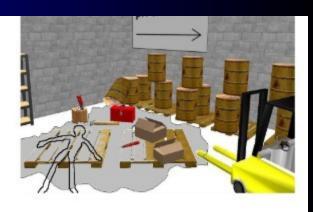
Suite à la découverte du corps, <u>nous vous transmettons les</u> <u>échantillons d'eau prélevés dans les poumons de la victime</u>.

Votre supérieur nous a également demander de vous fournir des solutions d'hydroxyde de sodium (soude) et de nitrate d'argent.


Ion testé	Ion chlorure (Cl ⁻)	Ion cuivre II (Cu²+)	Ion fer II (Fe²+)	Ion fer III (Fe³+)
Réactif	Nitrate d'argent (AgNO₃)	Soude (NaOH)	Soude (NaOH)	Soude (NaOH)
Couleur du précipité obtenu	Blanc qui noircit à la lumière	Bleu	Vert	Rouille

Test de reconnaissance d'ions

II) Que nous apprend la valeur du pH?


Le pH est une grandeur sans unité qui peut être mesurée avec un pH-mètre ou estimer à l'aide de papier pH

Act. 2 - pH

Des bidons de divers produits sont présents dans le **bâtiment 2**, l'un d'entre eux est renversé sur le sol.

Le produit renversé a un pH de 1.

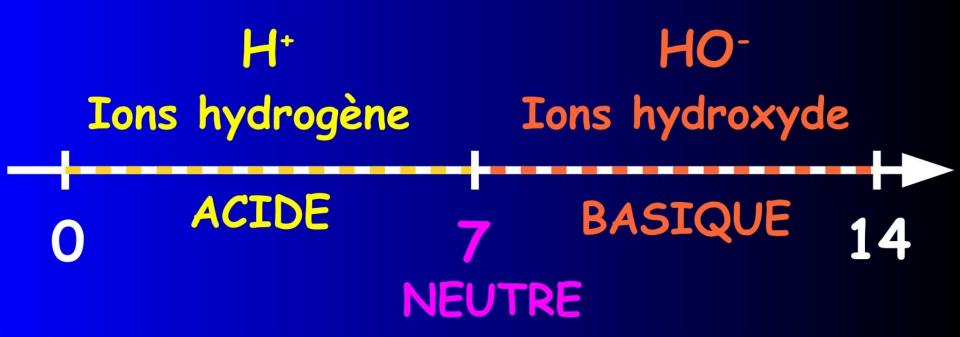
→ À vous de nous donner le nom du liquide renversé

Votre travail de chimiste : Réaliser un compte rendu sur une feuille de classeur décrivant les étapes des analyses réalisées.

Bidon	Contenu
А	Eau de javel
В	Eau salée
С	Vinaigre
D	Acide chlorhydrique
E	Produit sol
F	Soude
G	Eau pure

Ronde des couleurs

Le pH est une grandeur sans unité qui peut être mesurée avec un pH-mètre ou estimer à l'aide de papier pH


Une solution est:

- acide si 0 < pH < 7
- basique si 7 < pH < 14
- neutre si pH = 7

L'ion hydrogène (H⁺) est responsable de l'acidité.

L'ion hydroxyde (HO⁻) est responsable de la basicité.

En résumé:

TTT) Quels sont les dangers des solutions acides et basiques ?

Les pictogrammes de sécurité indiquent les dangers et les précautions à prendre pour éviter tout accident.

Pictogrammes	Significations	Commentaires
	Produits inflammables	Flamme Source de chaleur
	Produits corrosifs	Tissus biologiques Matériaux
	Produits explosifs	Choc Source de chaleur

Pictogrammes	Significations	Commentaires
***	Produits dangereux pour l'environnement	Récupérer Traités Solvants organiques
	Produits comburants	Combustion Source de chaleur
	Produits dangereux pour la santé	Précautions nécessaires

Pictogrammes	Significations	Commentaires
	Produits cancérogènes	Troubles Des cancers Précautions nécessaires
	Produits toxiques	Mort Précautions nécessaires

Les produits acides et basiques concentrés sont dangereux pour la santé et pour l'environnement.

La dilution (ajout d'eau) a pour effet de rendre une solution moins acide (ou moins basique). Le pH se rapproche de 7.